3.424 \(\int \frac{(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=365 \[ -\frac{i \sqrt{2} e^{5/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac{i \sqrt{2} e^{5/2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac{i e^{5/2} \log \left (-\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt{2} a^{3/2} d}-\frac{i e^{5/2} \log \left (\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt{2} a^{3/2} d}+\frac{4 i e^2 \sqrt{e \sec (c+d x)}}{a d \sqrt{a+i a \tan (c+d x)}} \]

[Out]

((-I)*Sqrt[2]*e^(5/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])])
/(a^(3/2)*d) + (I*Sqrt[2]*e^(5/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[
c + d*x]])])/(a^(3/2)*d) + (I*e^(5/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[
c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*a^(3/2)*d) - (I*e^(5/2)*Log[a + (Sqrt[2]*Sqrt[a]*Sq
rt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*a^(3/2
)*d) + ((4*I)*e^2*Sqrt[e*Sec[c + d*x]])/(a*d*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.315878, antiderivative size = 365, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {3500, 3495, 297, 1162, 617, 204, 1165, 628} \[ -\frac{i \sqrt{2} e^{5/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac{i \sqrt{2} e^{5/2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac{i e^{5/2} \log \left (-\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt{2} a^{3/2} d}-\frac{i e^{5/2} \log \left (\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{\sqrt{2} a^{3/2} d}+\frac{4 i e^2 \sqrt{e \sec (c+d x)}}{a d \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-I)*Sqrt[2]*e^(5/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])])
/(a^(3/2)*d) + (I*Sqrt[2]*e^(5/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[
c + d*x]])])/(a^(3/2)*d) + (I*e^(5/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[
c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*a^(3/2)*d) - (I*e^(5/2)*Log[a + (Sqrt[2]*Sqrt[a]*Sq
rt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*a^(3/2
)*d) + ((4*I)*e^2*Sqrt[e*Sec[c + d*x]])/(a*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 3500

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*d^2
*(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1))/(b*f*(m + 2*n)), x] - Dist[(d^2*(m - 2))/(b^2*(m + 2*n
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3495

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-4*b*d^
2)/f, Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^{3/2}} \, dx &=\frac{4 i e^2 \sqrt{e \sec (c+d x)}}{a d \sqrt{a+i a \tan (c+d x)}}-\frac{e^2 \int \sqrt{e \sec (c+d x)} \sqrt{a+i a \tan (c+d x)} \, dx}{a^2}\\ &=\frac{4 i e^2 \sqrt{e \sec (c+d x)}}{a d \sqrt{a+i a \tan (c+d x)}}+\frac{\left (4 i e^4\right ) \operatorname{Subst}\left (\int \frac{x^2}{a^2+e^2 x^4} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{a d}\\ &=\frac{4 i e^2 \sqrt{e \sec (c+d x)}}{a d \sqrt{a+i a \tan (c+d x)}}-\frac{\left (2 i e^3\right ) \operatorname{Subst}\left (\int \frac{a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{a d}+\frac{\left (2 i e^3\right ) \operatorname{Subst}\left (\int \frac{a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{a d}\\ &=\frac{4 i e^2 \sqrt{e \sec (c+d x)}}{a d \sqrt{a+i a \tan (c+d x)}}+\frac{\left (i e^2\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{a}{e}-\frac{\sqrt{2} \sqrt{a} x}{\sqrt{e}}+x^2} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{a d}+\frac{\left (i e^2\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{a}{e}+\frac{\sqrt{2} \sqrt{a} x}{\sqrt{e}}+x^2} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{a d}+\frac{\left (i e^{5/2}\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt{a}}{\sqrt{e}}+2 x}{-\frac{a}{e}-\frac{\sqrt{2} \sqrt{a} x}{\sqrt{e}}-x^2} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{\sqrt{2} a^{3/2} d}+\frac{\left (i e^{5/2}\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt{a}}{\sqrt{e}}-2 x}{-\frac{a}{e}+\frac{\sqrt{2} \sqrt{a} x}{\sqrt{e}}-x^2} \, dx,x,\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}\right )}{\sqrt{2} a^{3/2} d}\\ &=\frac{i e^{5/2} \log \left (a-\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt{2} a^{3/2} d}-\frac{i e^{5/2} \log \left (a+\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt{2} a^{3/2} d}+\frac{4 i e^2 \sqrt{e \sec (c+d x)}}{a d \sqrt{a+i a \tan (c+d x)}}+\frac{\left (i \sqrt{2} e^{5/2}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{a^{3/2} d}-\frac{\left (i \sqrt{2} e^{5/2}\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{a^{3/2} d}\\ &=-\frac{i \sqrt{2} e^{5/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac{i \sqrt{2} e^{5/2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{a} \sqrt{e \sec (c+d x)}}\right )}{a^{3/2} d}+\frac{i e^{5/2} \log \left (a-\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt{2} a^{3/2} d}-\frac{i e^{5/2} \log \left (a+\frac{\sqrt{2} \sqrt{a} \sqrt{e} \sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{\sqrt{2} a^{3/2} d}+\frac{4 i e^2 \sqrt{e \sec (c+d x)}}{a d \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 2.68322, size = 350, normalized size = 0.96 \[ \frac{e (\cos (d x)+i \sin (d x))^2 (e \sec (c+d x))^{3/2} \left ((-4 \sin (c)+4 i \cos (c)) \cos (d x)+4 (\cos (c)+i \sin (c)) \sin (d x)+\frac{2 (\cos (2 c)+i \sin (2 c)) \sqrt{\tan \left (\frac{d x}{2}\right )+i} \left (\sqrt{-\sin (c)-i \cos (c)-1} \sqrt{\sin (c)-i \cos (c)-1} \tan ^{-1}\left (\frac{\sqrt{-\sin (c)+i \cos (c)-1} \sqrt{-\tan \left (\frac{d x}{2}\right )+i}}{\sqrt{-\sin (c)-i \cos (c)-1} \sqrt{\tan \left (\frac{d x}{2}\right )+i}}\right )-\sqrt{-\sin (c)+i \cos (c)-1} \sqrt{\sin (c)+i \cos (c)-1} \tan ^{-1}\left (\frac{\sqrt{\sin (c)-i \cos (c)-1} \sqrt{-\tan \left (\frac{d x}{2}\right )+i}}{\sqrt{\sin (c)+i \cos (c)-1} \sqrt{\tan \left (\frac{d x}{2}\right )+i}}\right )\right )}{\sqrt{-\sin (c)+i \cos (c)-1} \sqrt{\sin (c)-i \cos (c)-1} \sqrt{-\tan \left (\frac{d x}{2}\right )+i}}\right )}{d (a+i a \tan (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(e*(e*Sec[c + d*x])^(3/2)*(Cos[d*x] + I*Sin[d*x])^2*(Cos[d*x]*((4*I)*Cos[c] - 4*Sin[c]) + 4*(Cos[c] + I*Sin[c]
)*Sin[d*x] + (2*(ArcTan[(Sqrt[-1 + I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sq
rt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[-1 - I*Cos[c] + Sin[c]] - ArcTan[(Sqrt[-1 - I*Cos[c]
+ Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] + Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 + I*Cos[c] -
Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]])*(Cos[2*c] + I*Sin[2*c])*Sqrt[I + Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] - Si
n[c]]*Sqrt[-1 - I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])))/(d*(a + I*a*Tan[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.337, size = 957, normalized size = 2.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

-1/2/d/a^2*(cos(d*x+c)-1)^2*(-I*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)-8*I
*(1/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*sin(d*x+c)+2*I*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x
+c)))*cos(d*x+c)^2-I*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*sin(d*x+c)-I*arctanh(1/2*
(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))-2*I*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin
(d*x+c)))*cos(d*x+c)^2+2*I*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)*sin(d*x+
c)+2*I*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)*sin(d*x+c)+I*arctanh(1/2*(1/
(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)+2*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)
+1-sin(d*x+c)))*cos(d*x+c)^2+2*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)^2-8*
cos(d*x+c)^2*(1/(cos(d*x+c)+1))^(1/2)-2*cos(d*x+c)*sin(d*x+c)*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)
+1-sin(d*x+c)))+2*cos(d*x+c)*sin(d*x+c)*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-I*arct
anh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*sin(d*x+c)+I*arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*
(cos(d*x+c)+1+sin(d*x+c)))-arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)-arctanh(
1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)+arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d
*x+c)+1-sin(d*x+c)))*sin(d*x+c)-arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*sin(d*x+c)-arc
tanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))-arctanh(1/2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+
1+sin(d*x+c)))+8*(1/(cos(d*x+c)+1))^(1/2))*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^3*(e/cos(
d*x+c))^(5/2)/(2*I*cos(d*x+c)*sin(d*x+c)+2*cos(d*x+c)^2-1)/(1/(cos(d*x+c)+1))^(5/2)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [B]  time = 2.11249, size = 1050, normalized size = 2.88 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/4*(2*I*sqrt(2)*e^2*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2
)*e^2*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e^2*arctan2(s
qrt(2)*cos(1/2*d*x + 1/2*c) - 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e^2*arctan2(sqrt(2)*cos(1/2*d
*x + 1/2*c) - 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*sqrt(2)*e^2*arctan2(sqrt(2)*sin(1/2*d*x + 1/2*c) + sin
(d*x + c), sqrt(2)*cos(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) - 2*sqrt(2)*e^2*arctan2(-sqrt(2)*sin(1/2*d*x + 1/2
*c) + sin(d*x + c), -sqrt(2)*cos(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) + I*sqrt(2)*e^2*log(2*sqrt(2)*sin(d*x +
c)*sin(1/2*d*x + 1/2*c) + 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1)*cos(d*x + c) + cos(d*x + c)^2 + 2*cos(1/2*d*x +
 1/2*c)^2 + sin(d*x + c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 1) - I*sqrt(2)*e^2*lo
g(-2*sqrt(2)*sin(d*x + c)*sin(1/2*d*x + 1/2*c) - 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1)*cos(d*x + c) + cos(d*x +
 c)^2 + 2*cos(1/2*d*x + 1/2*c)^2 + sin(d*x + c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c)
+ 1) + sqrt(2)*e^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) +
2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*e^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*
sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*e^2*log(2*cos(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*e^
2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2
*d*x + 1/2*c) + 2) - 16*I*e^2*cos(1/2*d*x + 1/2*c) - 16*e^2*sin(1/2*d*x + 1/2*c))*sqrt(e)/(a^(3/2)*d)

________________________________________________________________________________________

Fricas [B]  time = 2.29494, size = 1663, normalized size = 4.56 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/2*(a^2*d*sqrt(4*I*e^5/(a^3*d^2))*e^(2*I*d*x + 2*I*c)*log((I*a^2*d*sqrt(4*I*e^5/(a^3*d^2))*e^(2*I*d*x + 2*I*c
) + 2*(e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(3
/2*I*d*x + 3/2*I*c))*e^(-2*I*d*x - 2*I*c)/e^2) - a^2*d*sqrt(4*I*e^5/(a^3*d^2))*e^(2*I*d*x + 2*I*c)*log((-I*a^2
*d*sqrt(4*I*e^5/(a^3*d^2))*e^(2*I*d*x + 2*I*c) + 2*(e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c)
 + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(3/2*I*d*x + 3/2*I*c))*e^(-2*I*d*x - 2*I*c)/e^2) + a^2*d*sqrt(-4*I*
e^5/(a^3*d^2))*e^(2*I*d*x + 2*I*c)*log((I*a^2*d*sqrt(-4*I*e^5/(a^3*d^2))*e^(2*I*d*x + 2*I*c) + 2*(e^2*e^(2*I*d
*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(3/2*I*d*x + 3/2*I*c)
)*e^(-2*I*d*x - 2*I*c)/e^2) - a^2*d*sqrt(-4*I*e^5/(a^3*d^2))*e^(2*I*d*x + 2*I*c)*log((-I*a^2*d*sqrt(-4*I*e^5/(
a^3*d^2))*e^(2*I*d*x + 2*I*c) + 2*(e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^
(2*I*d*x + 2*I*c) + 1))*e^(3/2*I*d*x + 3/2*I*c))*e^(-2*I*d*x - 2*I*c)/e^2) + 2*(4*I*e^2*e^(2*I*d*x + 2*I*c) +
4*I*e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(3/2*I*d*x + 3/2*I*c))*e^(-2*I*
d*x - 2*I*c)/(a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(5/2)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \sec \left (d x + c\right )\right )^{\frac{5}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(5/2)/(I*a*tan(d*x + c) + a)^(3/2), x)